-
1 surjection
surjection /sɜ:ˈdʒɛkʃn/ (mat.)n.surjectivea.suriettivo: surjective mapping, applicazione suriettiva.
См. также в других словарях:
Surjective function — Onto redirects here. For other uses, see wikt:onto. A surjective function from domain X to codomain Y. The function is surjective because every point in the codomain is the value of f(x) for at least one point x in the domain. In mathematics, a… … Wikipedia
Mapping cylinder — In mathematics, specifically algebraic topology, the mapping cylinder of a function f between topological spaces X and Y is the quotient where the union is disjoint, and ∼ is the equivalence relation That is, the mapping cylinder Mf … Wikipedia
Open mapping theorem (functional analysis) — In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a continuous linear operator between Banach spaces is… … Wikipedia
Open mapping theorem — may refer to: Open mapping theorem (functional analysis) or Banach–Schauder theorem states that a surjective continuous linear transformation of a Banach space X onto a Banach space Y is an open mapping Open mapping theorem (complex analysis)… … Wikipedia
Degree of a continuous mapping — This article is about the term degree as used in algebraic topology. For other uses, see degree (mathematics). A degree two map of a sphere onto itself. In topology, the degree is a numerical invariant that describes a continuous mapping between… … Wikipedia
Vietoris–Begle mapping theorem — The Vietoris–Begle mapping theorem is a result in the mathematical field of algebraic topology. It is named for Leopold Vietoris and Edward G. Begle. The statement of the theorem, below, is as formulated by Stephen Smale.TheoremLet X and Y be… … Wikipedia
Heyting algebra — In mathematics, Heyting algebras are special partially ordered sets that constitute a generalization of Boolean algebras, named after Arend Heyting. Heyting algebras arise as models of intuitionistic logic, a logic in which the law of excluded… … Wikipedia
Abouabdillah's theorem — refers to two distinct theorems in mathematics: one in geometry and one in number theory.GeometryIn geometry, similarities of an Euclidean space preserve circles and spheres. Conversely, Abouabdillah s theorem states that every injective or… … Wikipedia
Enumeration — In mathematics and theoretical computer science, the broadest and most abstract definition of an enumeration of a set is an exact listing of all of its elements (perhaps with repetition). The restrictions imposed on the type of list used depend… … Wikipedia
Galois connection — In mathematics, especially in order theory, a Galois connection is a particular correspondence between two partially ordered sets (posets). Galois connections generalize the correspondence between subgroups and subfields investigated in Galois… … Wikipedia
Monad (category theory) — For the uses of monads in computer software, see monads in functional programming. In category theory, a branch of mathematics, a monad, Kleisli triple, or triple is an (endo )functor, together with two natural transformations. Monads are used in … Wikipedia